Chemistry A

Advanced Subsidiary GCE

Mark Scheme for June 2012

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2012
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

Annotations

Annotation	Meaning
[-I]d	Benefit of doubt given
[$\mathrm{C} \cdot \mathrm{]}$]	Contradiction
*	Incorrect response
[-W	Error carried forward
\square	Ignore
[0]	Not answered question
P	Benefit of doubt not given
Fill	Power of 10 error
\square	Omission mark
[i]	Rounding error
\square	Error in number of significant figures
\checkmark	Correct response

Subject-specific Marking Instructions

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
ECF	Underlined words must be present in answer to score a mark
AW	Error carried forward
ORA	Alternative wording

The following questions should be annotated with ticks to show where marks have been awarded in the body of the text: $\mathbf{1 (e) (i) , \mathbf { 2 (b) } , \mathbf { 3 (b) } \text { (ii) }}$

Question			Answer	Marks	Guidance
1	(h)	(i)	Sulfur has six bonded pairs (and no lone pairs) Electron pairs repel (one another equally) \checkmark	2	ALLOW 'It has six bonded pairs' ALLOW bonds for bonded pairs IGNORE regions OR areas of negative charge ALLOW 'bonds repel' DO NOT ALLOW 'Atoms repel' or 'electrons repel' 'Lone pairs repel more than bonded pairs' would score the second mark but would contradict the first mark if there is no reference to no lone pairs
		(ii)	The ability of an atom to attract electrons in a (covalent) bond (The octahedral shape) is symmetrical	3	ALLOW dipoles cancel out IGNORE polar bonds repel IGNORE charges cancel
			Total	23	

Question			Answer	Marks	Guidance
2	(a)		Periodicity \checkmark	1	ALLOW phonetic versions
	(b)		Al bonding mark Al has metallic (bonding) OR has (electrostatic) attraction between positive ions and (delocalised) electrons Si bonding mark Si has covalent (bonding) OR has shared pairs of electrons between atoms \checkmark Pbonding mark P has induced dipoles OR has van der Waals' forces (between molecules) Structure mark 1 AI AND Si are Giant \checkmark Structure mark 2 P is Simple molecular OR simple covalent Bond strength mark Metallic AND covalent are stronger than vdWs OR Bonds broken in AI AND in Si are stronger than the forces broken in P OR More energy is needed to overcome bonds in AI AND Si than the forces in $P \checkmark$	6	Use annotations with ticks, crosses, ECF etc for this part DO NOT ALLOW marking point 1 if Al has dipoles OR intermolecular forces OR molecules OR atoms OR attraction between nuclei and electrons OR attraction between oppositely charged ions DO NOT ALLOW marking point 2 if Si has dipoles OR intermolecular forces OR molecules but IGNORE 'molecule' Must be induced dipoles ALLOW vdW for van der Waals' IGNORE P has covalent bonds for marking point 3 Quality of Written Communication: ‘giant’ spelled correctly once and used in context for the fourth marking point DO NOT ALLOW covalent bonds are broken in phosphorus for marking point 6, but ALLOW answers that inform Al and Si are stronger than P , ignoring incorrect forces or bonds used above IGNORE 'heat' but ALLOW 'heat energy'

Question			Answer	Marks	Guidance
2	(c)	(i)	Increasing straight line OR curve from Na to $\mathrm{Ar} \checkmark$	1	ALLOW bar charts OR points IGNORE the standard of drawing as long as the trend is clear IGNORE decrease between Mg/Al and P/S Essentially the mark is for $\mathrm{Na}<\mathrm{Mg}<\mathrm{Si}<\mathrm{P}<\mathrm{Cl}<\mathrm{Ar}$ AND Al < Si AND $\mathrm{S}<\mathrm{Cl}$
		(ii)	Decreasing straight line OR curve from Na to $\operatorname{Ar} \checkmark$	1	ALLOW bar charts OR points IGNORE the standard of drawing as long as the trend is clear IGNORE Ar Essentially the mark is for $\mathrm{Na}>\mathrm{Mg}>\mathrm{Al}>\mathrm{Si}>\mathrm{P}>\mathrm{S}>\mathrm{Cl}$
			Total	9	

Question			Answer	Marks	Guidance
3	(a)		$\left(1 s^{2}\right) 2 s^{2} 2 p^{6} 3 s^{2} \checkmark$	1	IGNORE $1 \mathrm{~s}^{2}$ seen twice ALLOW subscripts
	(b)	(i)	$\mathrm{Mg}^{+}(\mathrm{g}) \rightarrow \mathrm{Mg}^{2+}(\mathrm{g})+\mathrm{e}^{-}$ Equation correct \checkmark State symbols correct \checkmark	2	ALLOW $\mathrm{Mg}^{+}(\mathrm{g})-\mathrm{e}^{-} \rightarrow \mathrm{Mg}^{2+}(\mathrm{g})$ for 2 marks The second mark is dependent upon the first mark except for the following close attempts for the first mark: ALLOW the following for one mark as states are correct $\begin{aligned} & \mathrm{Mg}(\mathrm{~g}) \rightarrow \mathrm{Mg}^{2+}(\mathrm{g})+2 \mathrm{e}^{-} \\ & \mathrm{Mg}(\mathrm{~g})+\mathrm{e}^{-} \rightarrow \mathrm{Mg}^{2+}(\mathrm{g})+2 \mathrm{e}^{-} \end{aligned}$ ALLOW e for electron IGNORE states on electron
		(ii)	Ionic radius mark $\mathrm{Mg}^{(+)}$has smaller (ionic) radius OR has less shells \checkmark Shielding mark (outermost electron) of $\mathrm{Mg}^{(+)}$experience less shielding \checkmark Nuclear attraction mark More nuclear attraction on (outermost electrons) OR Outer electrons are attracted more strongly (to the nucleus) ORA throughout	3	Use annotations with ticks, crosses, ECF etc for this part ALLOW $\mathrm{Mg}^{(+)}$has less energy levels ALLOW $\mathrm{Mg}^{(+)}$has electrons in lower energy level ALLOW $\mathrm{Mg}^{(+)}$has electrons closer to nucleus IGNORE $\mathrm{Mg}^{(+)}$has less orbitals OR less sub-shells IGNORE atomic for ionic IGNORE ‘different shell' ALLOW screening for shielding ALLOW Mg ${ }^{(+)}$has less electron repulsion from inner shells Quality of Written Communication: 'nuclear' OR 'nucleus' OR 'electron(s)' spelled correctly once and used in context for the third marking point ALLOW $\mathrm{Mg}^{(+)}$has more nuclear pull IGNORE $\mathrm{Mg}^{(+)}$has more effective nuclear charge DO NOT ALLOW more nuclear charge for more nuclear attraction for the third mark

Question			Answer		Marks	Guidance
3	(c)	(i)	$\begin{aligned} & \mathrm{Sr}^{2+} \checkmark \\ & \mathrm{OH}^{-} \quad \end{aligned}$		2	ALLOW $2 \mathrm{OH}^{-}$ ALLOW 2 marks for $\mathrm{Sr}(\mathrm{OH})_{2} \rightarrow \mathrm{Sr}^{2+}+2 \mathrm{OH}^{-}$ ALLOW 1 mark for $\mathrm{Sr}^{2+}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Sr}(\mathrm{OH})_{2}$ IGNORE H ${ }^{+}$
		(ii)	Sr has lost (two) electrons \checkmark		1	ALLOW Sr $\rightarrow \mathrm{Sr}^{2+}+2 \mathrm{e}^{-}$ IGNORE references to oxidation numbers
		(iii)	SrO AND $\mathrm{H}_{2} \mathrm{O} \checkmark$		1	ALLOW acceptable alternatives from Sr salts and alkalis eg $\mathrm{SrCl}_{2}+\mathrm{NaOH}$
	(d)	(i)	It shows the oxidation number of the sulfur OR the name without the IV is ambiguous \checkmark		1	DO NOT ALLOW 'the charge on sulfur' DO NOT ALLOW 'shows the oxidation number of the sulfate' ALLOW Otherwise it could be SrSO_{4} ALLOW Sulfur has different oxidation numbers AW
		(ii)	$\mathrm{H}_{2} \mathrm{SO}_{3} \checkmark$		1	
				Total	12	

Question			Answer	Marks	Guidance
4	(e)	(ii)	FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer $=242\left(\mathrm{~cm}^{3}\right)$ award 3 marks $\left(\right.$ amount of $\left.\mathrm{KClO}_{3}\right)=0.824 / 122.6 \mathrm{OR}=0.00672(\mathrm{~mol})$ $\left(\right.$ amount $\left.\mathrm{O}_{2}\right)=\left(\mathrm{mol}\right.$ of $\left.\mathrm{KClO}_{3}\right) 0.00672 \times 3 / 2 \mathrm{OR}=0.0101$ (mol) $\left(\right.$ volume of $\left.\mathrm{O}_{2}\right)=0.0101 \times 24000=242\left(\mathrm{~cm}^{3}\right) \checkmark$	3	IGNORE over rounding to two significant figures once DO NOT ALLOW over rounding to two significant figures twice eg ALLOW the following answer for 3 marks $241\left(\mathrm{~cm}^{3}\right)$ (0.00672 was rounded to 0.0067 OR 0.0101 was rounded to 0.010) ALLOW the following answers for 2 marks $240\left(\mathrm{~cm}^{3}\right)(0.00672$ was rounded to 0.0067 AND 0.0101 was rounded to 0.010) $252\left(\mathrm{~cm}^{3}\right)(0.00672$ was rounded to 0.007$)$ $161 \mathrm{~cm}^{3}$ (no multiplying by $3 / 2$) If there is an alternative answer, check to see if there is any ECF credit possible using working below ALLOW up to correctly rounded calculator value of 0.006721044046 ALLOW up to correctly rounded calculator value ALLOW ECF for mol of $\mathrm{KClO}_{3} \times 3 / 2$ for 2 nd mark ALLOW ECF for $\left(\mathrm{mol}\right.$ of $\left.\mathrm{KClO}_{3}\right) \times 3 / 2 \times 24000$
			Total	16	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

